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INTRODUCTION

In Technical Report Nos. 15, "Ultrasonic Wave Reflection at Liquid-

Solid Interfaces," and 17, "Studies of Linear and Nonlinear Ultrasonic

Phenomena," we presented summaries of our contributions to certain

subjects. Technical Report No. 18 is intended to expand on the summary

and bring it up to date. It is divided into two parts.

Part I. Schlieren Studies of Ultrasonic Waves

The Report begins with the description of a unique goniometer designed

by members of the Ultrasonic Group for use in the schlieren system for

visualization of ultrasonic waves in liquids. By using the properties

of parallelograms we were able to produce a precision goniometer without

use of precision machine shop facilities. The second paper presents

some photographs made with the goniometer in the schlieren system and

shows the effect of a layer of A1203 on a stainless steel reflector of

ultrasonic waves in water. The leaky Rayleigh wave excited in the

A1203 layer has a velocity smaller than that exicted either at a water-

stainless steel interface or at a water-A1203 interface.

Part II. Nonlinear Acoustics of Solids

In relatively larqe sinale crystal samples (1 inch in diameter and

1 inch long) one can measure such things as "The Nonlinearity Parameters

and Third-Order Elastic Constants of Copper between 300 and 30 K" as

reported in Paper No. 3. The fact that the measurements can be made

to low temperatures is especially important, as the effect of thermal

motion of the atoms is ignored in many theories. This means that they

are strictly applicable only at 00 K. For comparison with these theories,

then, we measure to the lowest readily obtainable temperature.

1
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A problem encountered in the study of the nonlinear properties of

solids is the fact that oftentimes it is difficult to grow large single

crystals of interesting substances. Ordinarily we use a 30 MHz ultra-

sonic wave of finite amplitude to determine the nonlinearity parameters

of single crystals I inch in diameter and 1 inch long. The amplitude

of the second harmonic, which must be measured absolutely, typically is

of the order of 1O-2 A in these samples. We posed for ourselves a

question: Given our desire to measure nonlinearity parameters, what is

the smallest sample one can measure with present technique? The fourth

paper, "Measurement of Nonlinearity Parameters in Small Solid Samples

by the Harmonic Generation Technique," is an attempt to answer the

question.

Another question of fundamental importance to nonlinear acoustics

of solids is the relationship between the nonlinearity parameter

measured acoustically and the Grineisen parameter which comes from

measurement of thermal properties. This question is given a relatively

simple, and almost complete, answer in the fifth paper on "Relationship

between Solid Nonlinearity Parameters and Thermodynamic Gruneisen

Parameters." This paper was based on the oral presentation given at the

joint meeting of the Acoustical Society of America and the Acoustical

Society of Japan. This was an especially appropriate audience since two

of the authors were from the United States and one was from Japan.

The final paper in this Peport, "Quantum Mechanical Theory of Non-

linear Interaction of Ultrasonic Waves," answers in part another

fundamental question of nonlinear acoustics. Presumably in the corres-

pondence limit the quantum mechanical description of phonon-phonon

interaction would become identical to the description (based on nonlinear
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elasticity)of the scattering of one acoustical disturbance by another.

But this assumption was hard to prove. The paper provides specific

examples. It begins with the general quantum mechanical description

of phonon-phonon interaction and specializes the description to that

of two collinear phonons of frequency v which interact to produce a

phonon of frequency 2v. (This comes from energy conservation:

hv + hv = 2hv.) By maintaining the wave description (avoiding quantiza-

tion), one is able to show that the mathematical result is identical

to that previously obtained from a generalization of elasticity. This

is true also in the description of third harmonic qeneration. In third

harmonic generation one is able to show, in addition, that the small

term in the third harmonic amplitude which contains fourth-order elastic

constants in fact comes from four-phonon interactions in the quantum

mechanical picture, whereas all of the other terms (those involving second-

order and third-order elastic constants) resulted from three-phonon

interactions. The advantage of the quantum mechanical approach lies

primarily in the fact that the path from the general description to the

particular application is explicitly marked, and the point at which one

makes any particular simplifying assumption can be located unambiguously.
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A UNIQUE GONIOMETER FOR USE IN SCHLIEREN

VISUALIZATION OF ULTRASONIC WAVES

M. A. Breazeale
Department of Physics

The University of Tennessee
Knoxville, Tennessee 37916

Introduction

Alignment problems encountered in the use of schlieren systems have

been recognized, and often solved, by a number of investigators. For

example, Fig. I is a schlieren photograph of the interaction between an

ultrasonic beam of Gaussian cross section 2 and a leaky wave at an inter-

face. The fact that the reflected beam is displaced to the left, rather

than to the right, results from a fine periodic structure (grating) at

the interface. The periodic structure shifts the phase of a leaky wave

trapped at the interface by lPO °, and causes the energy flow to follow

the path indicated in Fig. 2.

The photograph of Fig. 1 was made only after expenditure of

considerable effort. The grating periodicity of 0.178 mm required not

only precision alignment, but also the maintenance of the precision

aliqnment as the incident angle was changed. Subseouently a movie was

made 3 to show in detail what happens as the incident angle is changed.

For the movie the point of contact between the ultrasonic beam and the

reflecting interface had to remain the same for all incident angles.

This required a precision goniometer capable of rotating the transducer

along a circular path centered at the point of contact between the

ultrasonic beam and the reflectinq interface.
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Figure 1. Schlieren photograph of an ultrasonic beam of Gaussian cross
section reflected from a brass grating in water.
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The purpose of the present discussion is not to give an exhaustive

description of the phenomena that occur when at; ultrasonic beam is

reflected at a liquid-solid interface. Rather, the purpose of the

present discussion is to describe a precision qoniometer that has made

an experimental study of such phenomena possible.

Description of Goniometer

The design of the goniometer can be understood by observing

qeometrical properties of parallelograms. Suppose a parallelogram were

constructed by placing bearings at the four corners. The paralleloaram

then could distort as shown in Fig. 3, in which two positions are drawn.

The property of interest here is the fact that any point on the top edge

of the parallelogram traces out a circle centered at a corresponding

point on the bottom edge. This is true not only at the corner, labelled

A1 and A2 , but also for any other point (e.g., B1 and B2 ), as indicated.

The centers of the circles are CA and CB, respectively.

Let us now remove the bottom edge of the parallelogram, but fix the

position of the bearings by adding an auxiliary support. Further, let

us form another parallelogram by adding a horizontal piece, as indicatpd

in Fig. 4. To the two horizontal portions of the new parallelogram, let

us now add a new set of bearings and attach a new vertical member. A

transducer attached to this piece has the capability we desire: the

possibility to rotate about a point, the point of intersection of the

two dotted lines. A reflectinq surface placed at the position indicated

can be studied in detail. The ultrasonic beam reflected from it will

reflect from exactly the same noint on the interface for all incident

angles.
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A cioniometer using the principles described has been in use in the

Ultrasonics Laboratory at The University of Tennessee for several years.

A photoqraph of the coniometer and one lens of the schlieren system is

shown in Fig. 5. In the photograph several refinements are observable:

1. The support for the transducer has a dog-leg in it. This avoids

problems that would arise for incident angles great enough that

the edge of the water tank would interfere with transducer

motion.

2. A scale is provided on one of the supports so the incident anale

can be measured directly.

3. A worm gear is used to make precision adjustment of the

incident angle.

4. The entire system is counterbalanced by lead bricks.

Finally, it is obvious that the same effect could be accomplished

by use of a circular track of sufficiently large diameter. Such systems

have been constructed in other laboratories, but they require complicated

and expensive machine shop work. The advantages of the paralleloaram

goniometer are:

1. Simplicity of construction. (One only needs to bore the holes

for the bearinqs at the correct positions. No large or complicated

machine shop facilities are needed.)

2. Precise adjustment possible (no stick-slip in the movement).

3. Maintenance of precision over long periods.
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Figure 5. Parallelogram ultrasonic goniometer in a schlieren system.
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Conclusion

This new approach to an old problem nas produced a goniometer that

is working effectively in a schlieren system having an aperture of 8 inchec.

The principle on which the goniometer is based can be used with even

larger systems without a fundamental increase in the complication of

construction.
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LEAKY WAVE GENERATION AT Al03 LAYER ON \'-'NLLSS TLMLL IN Wh'IR
23

Laszlo Adler and Daniel L. Butler

Department of Physics
The University of Tennessee
Knoxville, Tennessee 37916

Abstract distribution is. in general. ,ipnificantly
different from that of the incident beam and

When a finite ultrasonic beam with a Gaussian the specular component.
amplitude distribution is reflected from an A1203
layer on stainless steel in water the reflected
amplitude field distribution indicates leaky wave
generation. rhe angle at which the leaky wave is
generated defines the leaky wave velocity. The
leaky wave velocity of this structure is measured
as a function of kh (where k is the wave number (a)
and h is the layer thickness). The effect of the
presence of the layer on the reflected amplitude
distribution is discussed.

1. Introduction and Background

The reflection of ultrasonic waves at a
liquid-solid interface as a function of incident
angle is a basic boundary value problem. For '-
infinite plane waves one solves the wave equation
with appropriate B.C. Recently interest has been
focused on the physically realistic problem of
the reflection of a finite beam of some well-
defined shape from the liquid-solid interface. CM
Both experimentall,

2 
and theoretical

3 
analysis

have established the existence of the so-called '

leaky Rayleigh waves at the liquid-solid boundary,
The existence nf these waves is easily demonstrated
by a Schlieren picture of an incident Gaussian
ultrasonic beam reflected below, at and above the
Ravleigh angle. Figure I shows the case for water-
stainless steel interface. The middle picture is
taken at the Rayleigh angle about 3(0.5. The angle
of incidence is such that the refracted wave is
coupled along the interface and leaks back to the 1,
liqtuid as it propagates. This leaky wave together
with the specularly reflected field produces the

total reflected field.

The theoretical analysis of this finite beam
problem wa-. carried out by Bertoni and Tamir.3 In (c)
their development of an analytical approximation to
the reflectiun integral, Bertoni and Tamir show
that it divides into two parts and can be written
as

vrefl (X, o z)v0 a..) * v I(Xzl (I)

V (x.:) represents a pecular reflection, which Figure I - Reflection of a 4;autsan Ultrasonic Beam
rpsemhles the incident beam in its amplitude dis- from a Water-Stainles% 'teel I- race for

tribution ut is shifted Igo* In phase. v (x,z} is Incident Angle s a) (hi , S* (Rayle th
the surface component, which is in phase w th the Angle)n Al 40h
incident beam over part of the interface and out of

phase over the remainder; its amplitude

1979 Ultrasonics Symposium Proceedings, IEEE Cat. 479CIl4q2-9SU
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For a Gaussian incident beam, as used in the A120 3 is chosen is because of our previous
experiments described below, Bertoni and Tamir

3  
studies of leaky wave st zuctiire on hoth water-

obtained an analytical approximation valid at the A12 0 3 and on water- tainlt-ss steel. 2  
[he main

interface. In order to compare theory with experi- part of the experimental arrangement to obtain
ment, Breazeale, Adler, and Scott2 corrected the quanti ative dara of the reflected beam profile is
approximation for points in the liquid halfspace. a pvcijllv iNigned goniometer shown on lig. 3.
The expressions for the leaky wave field compo- A 2-Alz ;aussian transducer sends out some long
nents are: pulses of 20-30 wsec. The receiver is scanned
Vo(Xr, through about 7 cm, which is the extent of the0 rx r)reflected field.

I (-(x r/Wr) 2ik[x rSinp+(Zr-ZO)cOSp iexp (2)
'Wrw Cosa

r p

v lXrZ r) -2V1 Xrzr)[l Ar exp(y
2
)erfc(y)] (3)

where

w x
r rY = Ts -r C; 4)

5 r
and

r  
w 2i(z r- z d) a/2w= w " 4j 2 S

kw cosa

The beam halfwidth w is measured at z ,  is the
liquid-solid equivalent of the Rayleigh aggle, and Figure 3 - Ultrasonic Goniometer.
a is the so-called "Schoch displacement." A was
d~rived by Schoch in his original lateral displace- The demonstration of the existence of leakv
ment theory and was shown to be mathematically waves was done in the following ways: The receiver
equivalent to a surface wave decay constant and transducer arms were scanned by small incre-
occurring in the Bertoni-Tamir approximation, It ments of angle, until the RF waveforms indicated
is a complex function of the acoustic velocities the phase cancellation. On Fig. 4 the RF wave-
and densities of the interface media. The finite form reflected from the Al 203-stainless steel in
beam reflection from the solid layer-solid in water water is shown. The angle at which the phenomena
has no theoretical treatment at present. The took place i:. 31.5*

. 
The Rayleigh leaky velocity

experimental investigation of this problem will be is calculated to be 2.03 , 10o cm/sec. The thick-
presented in the next section. ness of the Al2lj laver is 80,. The leaky wave

velocity frum the AI10 3 laver-stainless steel was
2. Leaky Wave Generation of Solid Layer- measured as a function of kh. On Fig. S the result

Solid Interface in Water

The problem presented here deals with the
generation of leaky waves at a liquid-solid layer-
solid interface. The problem is shown on Fig. 2.

WATER

LAYER h - LAYERVER THICKNESS /
h< A

SSSIATE

Figure 4 - Received Signal in the Rayleigh Angle
Reflection from Water-A1 203 Layer-Stainless
Steel.

is plotted. At kh = 0, the Rayleigh leaky velocity
Figure 2 - Water-Solid Layer-Solid Interface. of the stainless steel is obtained. As kh * -. the

Rayleigh velocity 9 f the sprayed AI,O 3 obtained (in
A solid layer which is of A1203 ceramic layer is bulk) is 2.18 x 10

° 
cm/sec. which is significantly

sprayed on a stainless steel block. The reason lower than the velocity of the A120 3 in compact
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form (vR  5.53 x 10S cm/sec). From the asymptotic 1.0
value o the leaky wave velocity one may obtain the
shear velocity and shear modulus as well of the £ ,
porous material A1203. Additional knowledge of the I. . . ...L-

wave ropagation in the thin layered material may ..
be obtained from the measurements of the ampli- ,,,- ,
tude distribution of the reflected wave at the

~530-

~.28X

S26-5 ,,,,- ,

24- 20 -10 0 10 20 30 40 50
a DISPLACEENT (ram)

22- - -- Figure 6 - Amplitude Distribution of a Reflected
Gaussian Ultrasonic Beam at the Rayleigh Angle.

S201

1 2 3 4 4. Acknowledgment
kh

Figure 5 -Variation of Leaky Rayleigh Velocity Naval Research. Acknldmt
(VR) for Water-A1203 Layer-Stainless Steel Researchs

Interface. S. References

Rayleigh angle. On Fig. 6 the theoretical values 1. W. G. Neubauer, J. AppI. Phys. 44, 48-55
of the reflected field is plotted (solid line). (1973); W .G . Neubauer r and L. R Dragonette,
This curve was calculated from the modified (.97p; . G. 45, 6 nd L .
Bertoni theory for liquid-steel interface and for A
the parameters used in the experiment (beam width 2. M. A. Breazeale, Laszlo Adler, and Gerald W.
w - 8 m, f = 2 MHz, transmitter-interface- Scott, J. AppI. Phys. 48, S30-537 (1977).
receiver total distance zR = 400 m). The o
corresponding experimental points measured are in 3. H. L. Bertoni and T. Tamir, Appl. Phys. 2. 157-
good agreement with the theory. The effect of
the 80u A1203 layer on the experimental data is 172 (1973).
shown by the points. There are several features
of these latter data points to consider. First,
the amplitude of the first peak is diminished
compared to the one without the layer. Second,
the null point which indicates the phase can-
cellation has shifted laterally, indicating that
the parameters changed and at phase cancellation
between V0 and V1 will take place at another
point. Since at that point VO - VI equations may
be inverted to obtain additional parameters of the
interface when a thin layer is present on a sub-
strate. Further theoretical work is required to
interpret these experimental findings.

3. Conclusions

The problem of ultrasonic leaky wave
propagation in thin (80o) ceramic layer (AI203) on
stainless steel immersed in water has been investi-
gated. It appears that the leaky wave velocity
becomes dispersive with the presence of the layer.
The layer also affects the amplitude distribution
of the reflected field. No theoretical work is
available at present to analyze this problem.
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Ultrasonic nonlinearity parameters and third-order clastic constants

of copper between 300 *K and 3 OK

W. T. Yost*

John H. Cantrell, Jr.** and

M. A. Breazeale

Department of Physics, The University of Tennessee, Knoxville, TN 37916

ABSTRACT

The ultrasonic harmonic generation technique has been used to extend

measurement of the nonlinearity parameters of copper to 3 'K. Comparison

of these data and combinations of truly adiabatic TOE constants with

predictions of simplified models show that a central force, nearest

neighbor model accounts reasonably well for the behavior of copper in

the regions of 45 *K and 200 OK and less well at other regions. The

central force, nearest neighbor model also gives a good qualitative

explanation for the temperature dependence of the combinations of TOE

constants that are measured in this investigation.

To be published in the December 1980 issue of Journal of Applied Physics.
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I. INTRODUCTION

In the present investigation previously established techniques arc used

to measure combinations of third-order elastic constants of copper from

300 OK to 3 *K. The technique involves the measurement of the distortion

of an ultrasonic wave as it propagates through various copper single

crystals.

The development of a capacitive detector and its calibration

permit the absolute determination of the amplitudes of finite amplitude

1
ultrasonic waves. Later refinements made possible the extension of

2
these measurements to lower temperatures. These methods have been

used to calculate various combinations of TOE constants at low

temperatures. Peters, Breazeale, and Par63used this technique to

measure combinations of TOE constants of copper to 77 *K. Yost and

Breazeale 4 measured combinations of TOE constants of germanium to 77 *K.

Bains and Breazealesextended the measurements of germanium to 3 OK.

Cantrell and Breazeale 6measured C 11 for various samples of fused

silica between 300 and 3 *K.

Various investigations of the TOE constants of copper have been

made. Daniels and Smith 7isolated various combinations of TOE constants

for copper by measuring the pressure derivatives of second-order

elastic constants. Hiki and Granato8used pressure derivatives and

uniaxial-stress derivatives to determine a complete set of TOE constants

for copper at room temperature. Salama and Alers 9 used uniaxial stress

derivatives exclusively to determine a complete set of TOE constants for

copper Pt three different temperatures, 295 *K, 77 *K, and 4.2 *K.
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10
Gauster and Breazeale examined combinations of copper 'Tol constants at

3
room temperature. Peters and Brcazcale and Par6 extended these

measurements to 77 *K. In this paper, we report results of copper

which have been measured to 3 'K, by a technique sensitive to changes

of TOE constants as a function of temperature. From these measurements,

we isolate certain combinations of TOE constants, which are of

particular theoretical interest.

The noble metals, of which copper is an example, form face-centered

cubic crystal configurations, for which simplified models exist to

explain the behavior of TOE constants. For this configuration, we find

that if forces of interaction are central in nature, the crystal is free

11
from external stress, and each atom is at a center of inversion, then

the Cauchy relations must hod:

Second-order constants C = C44 (1)

Third-order constants CI 2 = C166 (2)

and

C =C
123 456 =144

Hiki and Granato 8 have shown that if, in addition to the above

assumptions, nearest-neighbor repulsive interaction is the predominant

contribution to the elastic constants, then the additional relationships

also hold.

Second-order constants Cll 2C12 = 2C44 (3)

Third-order constants Cll = 2C1 2 = 2C166 (4)

C123 : 456 : 144 0

Our data allow us to make some statements about the validity of

the TOE constant Hiki-Granato relations for copper between 3 *K and room

temperature.
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II. EXPERIMENTAL TECHNIQUE

Pure mode propagation for a longitudinal ultrasonic wave is

possible for three principal directions in a cubic crystal. For these

directions, the wave equation reduces to
12

U=K U ( K U U(5)
S a2 + (3K 2 + K3) a 3a 2 (

where K and K are combinations of SOE and TOE constants respectively,
2 3

which are given in Table 1.

Assuming a sinusoidal wave of frequency w applied at a = 0, this

equation has the solution

U = A1 sin(ka - wt) - (3K2 + K3 )/8K 2 A
2 k2acos2(ka-wt) +... (6)

where k is the propagation constant 2ir/X, a is the propagation distance

in the sample, and A1 is the amplitude of the fundamental. The amplitude

A2 of the second harmonic term is given by

A2  [(3K 2 + K3)/8K 2 ] AI2 k 
2a(72= - + 1()8(]A 2 ka . (7)

The measurement of A2 and A1 is the basis of the calculation of the

nonlinearity parameter a where 5 is the negative of the ratio of the

nonlinear term to the linear term in Eq. (5).

-~ 2 (8)

Solving Eq. (7) gives S in terms of measured quantities:
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fA,
=8 --)% • '(9)
A-

The quantity K2 can be determined by the relation K2 = pv , where v is

the velocity of sound in the appropriate direction. For our purposes,

we calculated the values of K2 at the various temperatures from data

given in Overton and Gaffney.
1 3

III. RESULTS AND DATA ANALYSIS

In these measurements one uses techniques similar to those which have

been previously cited in the literature. 3,4,5,6 The room temperature

measurements for K in the various crystallographic directions have

-3
been taken from Peters, Breazeale, and Par6, since the same

samples were used. Figure 1 shows the values of a as a function of

temperature in the three principal crystallographic directions. Data

from Ref. 3 were used between 300 OK and 77 *K. Those below 77 OK are

the new data which were matched to the 77 OK datum from Ref. 3.

Figure 2 shows the values of K as a function of temperature

calculated from the data of Fig. 1. The scatter in the K. [110] data results

in part from the shape of the sample. The [110] faces are at an angle

of approximately 150 to the axis of the cylindrical sample. This canting

of the sample axis led to difficulties in keeping the sample seated on

the ground ring of the capacitive detector.

Error for these measurements are determined by the measurements

at room temperature and the relative measurements at the other

temperatures. The random errors for K3 at room temperature are ±1.S%,

±3.2%, and ±2% for values of K in the [100], [110], and [1111
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respectively. Systematic error for these measurements is estimated to

be at most ±10%. It is estimated that K, can be measured relative to

room temperature to well within 3%.

Examination of Table I reveals that the expressions for K3 are not

the simplest combinations of TOE constants available from our data. The

K for the [100] direction is the single TOE constant C III  But the

K for the other directions also include C Thus, it is possible to

subtract Cil from K3 for the directions [110] and [111]. Proceeding

in this fashion, one is able to obtain the combinations Cill, C 112 + 4C166

and C12 3 + 6C144 + 8C45 6 plotted in Fig. 3.

IV. DISCUSSION

The nonlinearity parameter a in Fig. 1 is observed to be relatively

independent of temperature, as was originally assumed to be the case with

the Grineisen parameter Y.14 ,15 As a matter of fact it is possible to make

a specialized definition of a "Grineisen number" which is related to the

nonlinearity parameter.16 ,17 ,18 Variation in the valueof P does occurbetween

approximately 25 *K and 50 °K, with the most distinct variation occurring

in the data for the [110] direction.

When one examines the third-order elastic constants combinations

plotted in Fig. 2, the temperature dependence becomes more pronounced.

Although the K3 for [110] direction C 1 varies by only 8% over the

temperature range, and the value of Cill at 0 °K is almost identical to

the value at 300 'K, the other two orientations exhibit more variation

with temperature. Nevertheless, it may be worthwhile to point out that

the three curves behave in somewhat the same way, The most obvious

temperature variation occurs in the K3 for the (110] direction. The
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origin of this effect can be located somCwhat more exactly by examinlin

Fig. 3, a plot of the simplest TOE constant com'ination available from

our data.

The combinations of TOE constants in Fig. 3 happen to correspond

to combinations which occur in the Hiki-Granato relations. One finds

that the Hiki-Granato relations predict that

C1 1 2 + 4C166 : 5/2 C 11

and C12 3 + 6C14 4 + 8C45 6 = O.

Thus, on Fig. 3 we have plotted 5/2 Cil1 to aid in the comparison. In

Fig. 3 one finds that C1 12 + 4C16 6 = 5/2 Cil to within approximately

6% over the entire temperature range. We may also point out that the two

curves have almost identical shapes over the entire temperature range,

and this implies that

Xil l 3(C1 12 + 4C166) aC11 2  'C166
-+43T 3" ar DT

over the same temperature range. This observation is consistent with

the contentions of Hiki, Thomas, and Granato 1 9 that higher-order

elastic constants of materials which have markedly overlapped closed

shells are influenced most strongly by nearest neighbors.

The combination of TOE constants (C12 3 + 6C144 + 8C4 56) exhibits

an interesting behavior, becoming slightly positive above 200 *K.

(This combination should be zero according to the central force,

nearest neighbor model.) At all temperatures, it remains small in

comparison to the other combinations. However, it exhibits a dip which
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begins near 45 'K, reaches its minimum value near 75 *K and changes

slope in the neighborhood of 200 OK. Thi, behavior has the same general

temperature dependence as the Bordoni peak in copper.20 Perhaps this

combination is sensitive to dislocation movement.

In conclusion, we feel that our data are nominally consistent

with the predictions of a central forces, nearest neighbor interaction

model. As usual, there are details which need to be explained, but

further explanation would depend upon a more detailed model than we

have used, and more detailed data than are available.
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the capacitive receiver shown in Fig. 1. Ultrasonic wave pulses are generated by the
quartz transducer and propage downward through the sample and impinge on the bottor.
surface. Since the sample surfaces are optically flat, a rece4'ver button can be
placed at a distance So from the sample to form a parillel 'ate capacitor. With a
bias voltage Vb. of approximately IS0 volt, dc, ont- find5 that the ultrasonic wave
impinging on the interface gives an ac voltage 2

2AV
V h (2)

S0

where A is the amplitude of the harmonic to he measured.

Approximat ions

We have examine,! the approsimrat ions inherent in the use of hair'-onic gener.'I ion to
measure the nonlinearity parameters of solids and find that three of then need to Ile
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was assumed to satisfy the infinite plane wave assumption reasonably well in samples
which were small enough to place in a helium cryostat.

EXPERIMENTAL RESULTS

We now would like to report the results of a systematic experimental investigation of

the effect of diffraction on our measurements. A single crystal copper sample was
selected which allowed ultrasonic wave propagation along the [1111 direction. The
sample was 2.54 cm in diameter and 3.96 cm in length. By selecting transducers with
diameters given in Table II, we were able to effectively have the capacitive receiver
in either the Fresnel zone or the Fraunhofer zone of the ultrasonic wave diffraction
field. Two capacitive receivers were used with diameters of 11.8 and 6.36 mm.

Table II. Transducer diameters and ultrasonic beam characteristics used in a [11]
copper sample. Receiver diameters were 11.8 and 6.36 mm.

Transducer
Diameter D/s a2/) 0

(mm) (mm) (degrees)

12.65 74 233 0.9

5.40 32 43 2_.2
3.70 20 .
I1 t 11 6 6.1

To rive an idea of the relative sire, a scale drawing of the (linear) ultrasonic
wave field in the sample is given in Fig. 2. To make the drawing we have assumed
that the interrediate size 3.70 om transducer is behaving as a piston vibrator and
S producing a )ream whose half-angle " is given 1,y

sin 1 = 0.(1 )/a (3)

%here I is the (fundarental) ultrisonic wavelength and a is the transducer radius.
The distance a-!X, so-etioes referred to as the rresnel distance, also is indicated.
For the largest transducer this distance is much greater than the sample length so
that the measurements are made within the Fresne zone where the plane wave approxi-

mation 1 reasonably well-atisfied.

As seen from Fq. (1), a measure of the nonlinearitY parireter for a given frequency

and sairple length is the ratio A-/ 1. From lq. (", it is clear that this ratio is

proport:onal to w/\I here %; and \, are the voltages generated in the receiver by

the fundamenta; and the second har-onic, respectivelv. We would determine the effect
on this measured ikant,'tv h1 diffraction. The a.eriges of a number of measurements
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iental!, obsere,: tat. hoecer, ' ere are s,-e c in !'.ent observ'ations which can
1,e made.

Tie :r: ' '' 7 t' trar,. ..er~ ccceler '' 11 -cr,'tt re ,.cd in Tcl.,urlul
r! I':I ,r . rar 1e*er'. i , .I it, It s re,-.' i .i e1 r , t hit

" -ell r rei. '-,'' : '.'.i ' i ll, th,. -lid

:,' .O .e,. !,'r .=d -, .e a ~ t " !i r a,, !, r t hf. ,i 111' , ,.~l I

,' .- . " t ' ' nrc. inc .it tI . -e irt;.et t!he con-

; , " ' 't i '. . -. .. t"' < .t. .er ': ,, , 0. ;e e' ' t ,. *. L," ii'e ioatd

.ret 'I I,' a :.. f,,,. y- =.i , s.' s' " :t .'e WiI1i( wave

' ., i "t . ' . .:.5~e' V-2.,r -e in Ii1i. - Ca.
t . " i.t ' t e I a.: ".awp'i," the

, , , , , - lee 'C '-,:ear'
"
. ?sneter' . -qcteristi, t

S l li.e !n .i
'

,- <*t. . ** { '' '" p',re wale a rt- 
"

r',re , e, the



35

,--.3- ,-,-

II

I I

I-.

-- * .. e -

RECEVERS

Figure 2. Ultrasonic wave field produced by 3.7 mm transducer.

C)/A -

20 :C 6c 80

03

A

, 02

fl 0

\>,, \ * . o . .-

° ,

636rr - -

2 " c " $ 4

Figure 3. Measured values of the quantity V2/V2 for different transducer
and receiver diameters.



Lo

36

data points at a transducer diameter of 3.7 mm require a correction to bring them in
line with the value of V2 /V( indicated by the solid point, and the correction factor
can be evaluated from the curves. Correction of data for smaller transducer
diameters might not he accurate enough. Allowing the samplc walls to be well out-
side the ultrasonic beam might require a sample diameter of, say, S mm. Thus, we
come to an approximate answer to the question poscd: the smallest sample usable with
the harmonic generation technique has a diameter of S mm and a length of 4 mm. The
surfaces must be optically flat and parallel, of course.

Finally, we would point out that a very promising prospect exists for progress in the
general subject of nonlinear acoustics. Figure 3 is the first numerical evidence we
have that after including the nonlinear terms describing the propagating medium, the
diffraction integral should have solutions which are tractable. The curves give the
values of an integral across a plane at specified distances from a sinusoidally
vibrating piston source which is radiating into a nonlinear medium. A large number
of such curves taken for different distances and different transducer sizes would
allow one to evaluate directly the effect of diffraction on harmonic generation.
This remains one of the unsolved fundamental problems of nonlinear acoustics.
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Relationship between solid nonlinearity parameters and
thermodynamic GrOneisen parameters
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The relationship between the ultrasonic nonlinearity parameter for solids and the acoustic Gruneisen
number has been derived for longitudinal ultrasonic wave propagation in the pure mode directions of
cubic crystals and isotropic solids. Agreement between the acoustic Griineisen number and the
thermodynamic Griieisen parameter is best for ultrasonic harmonic generation measurements along the
[1001 direction of a cubic crystal. Comparison of the temperature curves of the acoustic Gruneisen
number of copper shows that the acoustic Griineisen number generally follows the temperature
dependence of the lattice contribution to the thermodynamic Griineisen parameter.

PACS numbers: 43.25.Ba. 43.35.Cg

INTRODUCTION a2 o a 2 aun \ it + La2l,

In developing the harmonic generation technique for where po is the unstrained mass density, u is the Ion-
measurement of the nonlinear properties of solids, we gitudinal displacement, and a is the Lagrangian coor-
have found a fundamental significance to the ratio of dinate along the wave propagation direction. 1K, and K3
coefficients of the nonlinear terms to the linear terms dare linear combinations of second- and third-orde7
in the nonlinear wave equation describing the propaga- elastic constants and are given in Table I for the three
tion of a finite amplitude ultrasonic wave in the solid. pure-mode directions in the cubic crystal. The equa-
This ratio, defined as the ultrasonic nonlinearity pa- tion of motion for an isotropic solid is identical to that
rameter for solids, is found' in the perturbation solu- of a cubic crystal in the [100) direction, with the ap-
tion for the particle displacement, in the expression propriate interpretation of C, and C111. An implicit
for the discontinuity distance, in the implicit solution portinteprtion o C andsolution for the particle velocity Bn/ia, which satisfies
for the wave velocity, etc. In addition, this quantity Is Eq. (1) and the boundary condition
observed to be only weakly dependent on temperature
in those solids studied.2 -5 These observations have led sin t (2)
us to realize that there is an intimate relationship be- t
tween the ultrasonic nonlinearity parameter and the
Gruneisen parameter evaluated, for example, from
studies of Brillouin scattering,6 from thermal expan- a? = (I, si I 7K ,\- w i

1

sion, 7 or from ultrasonic attenuation.8 The purpose of T1 -, sin - wa/
the present work is to define the acoustic Griineisen "1 .2 3\

number for cubic crystals and isotropic solids and to + a (3)
give the relationship between it and the ultrasonic non- 22
linearity parameter. Values of the acoustic Griineisen
number taken from room temperature data on ultra- In analogy with the results of Earnshaw for gases, one
sonic harmonic generation are presented, and a com- finds that the phase velocity Vi can be written
parison is made between the temperature dependence
of the acoustic Gr~ineisen number and that of the ther- V,= Vo + i , (4)
modynamic Griineisen parameter.

where V., = (K,/po)' / 2 is the velocity of a wave having

I. THEORY infinitesimal amplitude and

One can consider the wave equation in a cubic crys-
tal for three pure-mode directions: (1001, (1101, and TABLE I. KZ and K for [1001, [1101, and 1111] directions.

[1111. In these three directions pure longitudinal Direction K2  K3
waves may propagate and the transverse wave is not
excited. The nonlinear equation of motion for pure Ion- [1001 Cit C 1t
gitudinal waves in these three directions, assuming no
attenuation, may be written 11101 C11 ' ('12 4 2C44 CII 3Cn2,12Cl6c

2 4

[111! L
+ 2C1 24C44 Ci I 6C2 1 12Cj'4,4 *2 c

aiPlresent address: NASA Langley Research Center, M. S 499

Hampton, VA 23665. 2(C123 16C4,%
b)Present address: Institute of Scientific and Industrial Be- 9

search, Osaka University, Osaka, Japan.
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TABLE 11. Acoustic Griineisen numbers 4js for [1001, [110], and [li1] directions in cubic crystals.

SDirection V1

11001 + .Ciii

(1101 -fCi 1 +6CI2 +12C44+ C, + 3CIi 2+12CjeG
L 4C, + 4C,, + 8C 4

ill)CI+ 18Ct2 + 36C4,+ CI + 6CI1 + 12Cu4 + 24Ci66 +2Ci23 + 16C456]
L9 6C t + 12Ci2 + 24C4n

( [(3K,+K 3 )/K]1 (5) This is possible because in harmonic generation exper-
iments the nonlinearity parameter is obtained by ex-

is defined as the ultrasonic nonlinearity parameter for trapolating to zero amplitude a plot of the ratio of the
solids. The subscript i represents all indices specify- aplito ze ampitd aot o the rai of the
ing longitudinal wave propagation in the pure-mode di- amplitud e scondnhar on o the suaeothe

rectonsof te cysta. Te efectof he nnliear fundamental amplitude as a function of the fundamental
rections of the crystal. The effect of the nonlinear amplitude. In the limit of zero amplitude the difference
terms in the wave equation, then, is to change thether veint wa eqatounth propi tohang the ro between the displacement gradient and the Lagrangian
phase velocity by an amount proportional to the product strain measure vanishes. When evaluated at zero
of the particle velocity au/al and the nonlinearity pa-
rameter 3. This solution is valid for propagation dis-he acoustic Grineisen number of Eq. (8) is thetancestess tha thdis ontisnuaid op dist e same as Brugger's tensorial isentropic Grfineisen num-tances less than the discontinuity distance berl0 for a longitudinal strain along the propagation di-

L4 V a(.a!_ 1) (6) rection of the mode.

o '(5/ L1 According to the standing wave condition of the Debye

which is of the order of I m for common solids. From continuum model, for any state of strain the mode fre-
Eq. (4) and assuming irrotationality, the change in ye- quencies are related to the wave speed V, and the un-
locity, AVi = Vi - V,,, resulting from the nonlinearity strained dimension I of the crystal by 0

of the medium can be expressed in terms of the dis-
placement gradient On/8a by x viii "  (9)

1 anl 1 an Substituting this expression for the mode frequencies
av= = -5~t o3iV°ia" -(7) into Eq. (8) and integrating between Voi and 'i, one ob-

tains
In order to relate this change in velocity to the

change of thermal phonon velocity resulting from lat- Vi- V, = AV= V -- (10--"
tice anharmonicity, it is convenient to define the acous-
tic Grfineisen number specifying the adiabatic strain Comparing Eqs. (10) and (7) one finds the relationship
dependence of a lattice frequency vi for the longitudinal between the acoustic Gruneisen number and the ultra-
mode i by sonic nonlinearity parameter for solids is expressed

I(8) by

' 0 ,s / i 5 . (11)
where the subscript S emphasizes the fact that the de-
rivative is taken under isentropic conditions, and the In Table II are listed the acoustic Gr ineisen numbers
subscript i represents all indices specified by longitu- for the three pure-mode directions in cubic crystals.

dinal wave propagation in the directions [l00J, [II0l, II. COMPARISON WITH EXPERIMENT AND
and [1111. Here we take the derivative with respect to CONCLUSION
the displacement gradient an/aa rather than with re-
spect to the Lagrangian strain measure as ordinarily Ultrasonic nonlinearity parameters have been mea-
is done in defining generalized Graineisen parameters. sured for germanium, copper, and fused silica. As

TABLE 111. Comparison of adiabatic Griineisen number and other Griineisen parameters.

S 1

Present work Nava and Romero Collins and White"

Y61100) y flli 'Y11111 I'[vi ,0 t l"l0 ' tl

Copper 2.64 5.50 3.94 2.00
Germanium 1.5 3.0 2.6 1.07 1.12 1.41 0.75
Fused silica -5.8 0.18

'11. Nava and J. Romero, J. Acoust. Soc. Am. 64, 529,-532 (1978).
h j. (,. Collins and (;. K. White, "Thermal Expansion of Solids" in I'rogress in l.o, 7"cninpraure

Physics, edited by C. J. Gorter (Wiley, New York. 1964), Vol. 4.
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these measurements have been made from room tem-

perature down to 3 oK, a fairly detailed comparison can fr s

be made between the acoustic Griineisen number and ,I

other Griineisen parameters in some cases. W-
7V

In Table III we list room temperature values of the 2

acoustic Gr~ineisen number. Also listed are room tern- < . .

perature values of thermodynamic Grineisen param- z

eters7 and effective ultrasonic Grfineisen parameters. e

The thermodynamic Gr~ineisen parameter is given by W 1
Z COPPER

vacsKCv= a/ksCp, (12) ::

where a is the total thermal volume expansivity, K T

and K, are the isothermal and the isentropic compres-, , I

sibilities, respectively, and C v, and C, are the isocho- .01 .02 .05 .1 .2 .5 1.0

ric and isobaric heat capacities. The effective ultra- TEMPERATURE (T/9)

sonic Griineisen parameter rp is related to the ultra- FIG. 1. Temperature dependence of the acoustic Gr~neisen
sonic attenuation for a wave of polarization p and prop- number ysl0oo and the thermodynamic Gruneisen parameter y
agation direction q by" of copper.

oa = (3l22 K 5T/p6S 2 )JY,, (13)
decreases as the temperature is lowered.

where K. is the thermal conductivity along q, T is the
absolute temperature, Q is the ultrasonic angular fre- It is interesting to notice that the acoustic Griineisen

quency, p is the miass density, and C, and S are the number yr100 remains parallel to the lattice contribu-

sound wave and Debye average velocities, respectively. tion to the thermodynamic Griineisen parameter, and
almost exactly 1.5 times as large. The significance

Examination of Table III reveals the fact that the of this observation is under investigation at the present

acoustic Griineisen number agrees most closely time.
with the thermodynamic Griineisen parameter, and that
all three of the acoustic Griineisen numbers are larger ACKNOWLEDGMENTS
in magnitude than the thermodynamic Griineisen pa-

rameter. The greatest discrepancy between the two This research was supported in part by the U. S. Of-

Gr'ineisen parameters occurs for fused silica for fice of Naval Research. The authors wish to thank

which the acoustic Gruineisen number is negative. In- Dr. W. T. Yost of Emory and Henry College for his

terestingly enough, the behavior is consistent, for help in taking and analyzing the experimental data for

fused silica exhibits an anomalous behavior of many the copper samples.

of its thermodynamic and ultrasonic properties.'.. 4

The negative value of the acoustic Griineisen number
is related to the fact that the second harmonic in fused 1M. A. Breazeale and J. Ford, J. Appl. Phys. 36. 3486-3490
silica is generated 180° out of phase with that generated (1965).
in other solids. 5  2R. D. Peters, M. A. Breazeale, and V. K. Par , Phys. Rev.

B 1, 3245-3250 (1970).
It is significant that the agreement between the acous- 3W. T. Yost and M. A. Breazeale, Phys. Rev. B 9, 510-516

tic Griineisen numbers and the effective ultrasonic (1974).
Griineisen parameters of germanium is as good as it is, 4j. A. Bains, Jr., and M. A. Breazeale, Phys. Rev. B 13,
because the data come from fundamentally different 3623-3630 (1976).
measurements: ours from harmonic generation, Nava 5J. 11. Cantrell, Jr., and M. A. Breazeale, Phys. Rev. B 17,
and Romero's from attenuation. 4864-4870 (1978).

GW. ieinicke, G. Winterling, and K. Dransfeld, J. Acoust.

The temperature dependence of the acoustic Gr~inei- Soc. Am. 49, 954-958 (1971).

sen number for the [100] direction in single crystal 7j. G. Collins and G. K. White, "Thermal Expansion of Solids,"

copper was found to be quite similar to that of the ther- in Progress in Low Temperature Physics, edited by C. J.
modynamic Grfineisen parameter. The two are plotted Gorter (Wiley, New York, 1964), Vol. 4.
on the same graph in Fig. 1. The temperature scale is 81. Nava and J. Romero, J. Acoust. Soc. Am. 64, 529-532

(1978).
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ABSTRACT

Nonlinear interaction of ultrasonic waves is discussed from the

very general quantum mechanical viewpoint. By using the concept of three-

phonon interactions one is able to derive formulae for power and intensity

of ultrasonic waves generated through nonlinear mixing of two ultrasonic

waves, as well as the formula for parametric amplification of an ultra-

sonic wave through its nonlinear interaction with another ultrasonic wave.

The effect of attenuation on nonlinear ultrasonic wave interactions also

is discussed, and it is shown that in some situations attenuation strongly

affects the generation of the second harmonic of an initially sinusoidal

ultrasonic wave. It is shown that in the correspondence limit the quantum

mechanical viewpoint gives results which are in very good agreement with

results obtained from classical physics.

Will be published in November 1980 issue of Journal of the Acoustical
Society of America.
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I. INTRODUCTION

Nonlinear interactions of ultrasonic waves in solids are of two general

types. First is the interaction in which two waves generate a third wave

(this also includes harmonic generation of an initially sinusoidal wave, as

we will see). Second is the amplification of an ultrasonic wave through

its interaction with another ultrasonic wave. Taken together, these two

types of nonlinear interaction offer a wide range of prospects of technical

application in addition to providing an excellent possibility to study the

fundamental anharmonicity of a crystalline lattice.

Theoretical discussion of the subject can be either from the classical

approach or the quantum mechanical approach. In the classical approach one

1 -6
uses coupled-mode equations and the classical language of "plane waves

propagating in a semi-infinite medium." In spite of the fact that

classical physics is quite adequate for discussion of ultrasonic interactions

in which quantum effects are negligible, the quantum mechanical approach

7-12
using the concept of phonons also has been applied to this problem. The

quantum mechanical approach gives a reasonably straightforward solution even

when the interaction is treated as a three-dimensional problem in an

anisotropic medium.

In general, the advantages of the quantum mechanical point of view in

the description of ultrasonic wave interactions have not been utilized fully.

Occasionally discrepancies occur in the results obtained by different

authors,7 ,11 and often there is difficulty in comparing different theoretical

results because the definitions of the physical parameters are not totally

consistent. Such nonuniformity of the theoretical approach tends to

discourage comparison between experimental results on the nonlinear behavior

of ultrasonic waves and results of quantum mechanical theories.

---------
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'the present paper, therefore, is devoted to a Unified quantum

mechanical discussion of the nonlinear behavior of ultrasonic waves in

crystals. We discuss both noncollincar and cfllinear interactions of ultra-

sonic waves and point out the possibility to measure nonlinear constants of

the propagating medium. We employ the quantum mechanical treatment using

the concept of phonons and show that the quantum mechanical treatment gives

not only results obtained previously by classical methods, but also gives

the possibility to describe very general cases of interaction of ultrasonic

waves in an anisotropic medium of finite size.

In describing the nonlinear behavior of ultrasonic waves using the

concept of threc-phonon interaction, the very first problem is the derivation

of the interaction Hamiltonian density operator. Section II is devoted to

this derivation. Section III descriDes interactions in which two ultrasonic

waves, through nonlinear mixing, generate an ultrasonic wave whose frequency

is the sum of the frequencies of the mixed waves (parametric up-conversion).

Section IV discusses parametric down-conversion of two ultrasonic waves

and parametric amplification of an ultrasonic wave through its interaction

with another ultrasonic wave. In Section V we consider the effect of

attenuation in nonlinear interactions of ultrasonic waves. Finally, in

Section VI we discuss the effect of our limiting assumptions and relate

them to assumptions made in classical theories.
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II. IN'FI:RACION IIAMIRiTON IAN

The interaction Hlamiltonian density operator fur three-phonon interactions

can be obtained by starting with the classical form of the energy of interaction

between two ultrasonic waves. First, one replaces the classical displacement

vector by the corresponding operator. The components of the displacement

operator then have the form:
13

^ IT 1/2 qe iq r +a* e-iq r)k (q) (I)

where -1 is Planck's constant divided by 2R; p is the mass density; V is the

volume of normalization; w is the angular frequency of a phonon having theq

wave vector q; a and a* are respectively the annihilation and the creation
q q

operators of the considered phonons; and k (q ) are components of the polarization1

vector (q)

((I) = U
u (q)

where u 0 is the amplitude of the ultrasonic wave. As the phonon of wave

vector q in general can have three different polarizations, the index "q" will

be understood to be a double index, referring both to wave vector and to

polarization. Here, and in what follows, the Einsteinian summation over

repeated indices will be understood.

Next, the classical form of an interaction energy density for the scattering

of an ultrasonic wave Sij by an ultrasonic wave S'. can be obtained if we assume

that the wave S'. modulates the properties of the medium in which the wave S..
iJ

is propagating. Thus, the energy density of the wave S.. has the formIj
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Lijk9 s- s (2U =  jCijkZ + mnj ijSkZ (2)

where the S.. and the S'. are the strain tensor components of the given

ultrasonic waves and the Cijki are the elastic moduli of the medium stiffened

by the presence of an ultrasonic wave.

Using relations (1) and (2) and making a plane wave expansion, brings the

Hamiltonian density to the form

i 1f.3/2 (mq)(qm')  (q") (jjq) .(q')
int 2(2oV) I ljkQ. i j k z.

+ mn I k m j n2

qq q (3)

X a qe iqt " . a*e- i q4 ' a'  e iq - .r  _ , , " "-r
a q a q 'e

V~ ~ ir~ i-iq r'~

-i q

where v q. v and v q- are phase velocities of the phonons (-,W q), (q,Wq) andq q ""1

,q..,,) respectively, and m. , m. , and mi  are components of the unit(q-' (q

vectors m((q = /= q'/q' and = q /q". The first part of the

interaction Hlamiltonian density (3) arises as a result of the nonlinearity of

the strain tensor and it expresses self-coupling of phonons; the second part of

(3) is a consequence of the anharmonicity of the lattice.14 In this form, the

Ilamiltonian density describes two kinds of three-phonon processes: First, the

creation of a phonon through the annihilation of two phonons is suggested by

those terms in Eq. (3) which contain 5q ., and q*,,; second, the disintegration
iq q q
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of a phonon and the simultaneou creation of two new phonons i; 'uggetvd by

terms containing A q', and *

In the following we discuss both processes and show their macroscopic

behavior in the nonlinear interactions of ultrasonic waves.

III. PIONON CREATION THROUGH ANNIIi LATION OF TWO PHONONS
(Nonlinear Parametric Up-Conversion)

In a nonlinear medium two phonons can interact to create a new phonon. lhe

experimental situation corresponding to this process is the situation in which

two ultrasonic waves of angular frequency wI and w, generate a new ultrasonic

wave of angular frequency w3 = 0l + 02.

In describing the main features of this interaction, we will need knowlcdte

of the size and shape of the interaction volume. In order to keep our discussion

general, but also fairly simple, we shall assume that the interaction volume and

the volume of normalization coincide with the volume of the sample under

investigation. The interaction coupling constant G , however, will be
qlq 2 q3

assumed to have nonzero value only in that part of the sample in which the

interaction actually takes place. This assumption can be employed if the

considered part of the sample is much larger than the wavelength of the ultra-

sonic wave.

Let us now assume that there are N1 phonons having the wave vector ql

and N, phonons having the wave vector q2 in the volume of the sample. Let us

also assume that the initial state of the newly created phonons having the

wave vector q3 is empty. This means that the initial state vector is

IN1 ,N2,O>. The probability amplitude for transition from this initial state

to the final state <NI-1 ,N2-1,11 is



4 F

< ' . i - 1- 1 " ! N , , , €I > I e w I: / ' -" 1 1

i nt 1' 2 20

0 +' fe dV.
¢ - V i ) dV

Nhcrt. V thL. interact ion volume, s the volume n which I a. rnCd

to have non:ero value, The quantity (1 ha- the form

qq = 1 r2 {l (q) ((I,) k(q 3) q 1)*q.

q~ q q

1 3
+ (q i qj k k) (r 3q) q) kr2

(q12 ) (q 3 ) (q l ) (q lI) ( -.(q ), ( Ck3 )+ m mj m k  k ' )

A j2 (ql1) (q, ) Y(q1)1 (q) (q3)3

+Aijk.mnmi mk - m "j k '(

.l) _,(q, )

where (k .k - ) is the cosine of the angle between the polarization vectors
.*(q .(q2)

k and k , etc.

In deriving the probability amplitude, Eq. (1), we have assumed that

Nl :!nd N2>>1, A factor 3! is implicit in Eq. (4) as a consequence of the

summation over all possible q, q, and q". The vectors q1 and qt2 are fixed

by the experimental situation, and the transition probability amplitude is to

be considered a function of q3. The variability of q., however, is limited by

the integral

i (q l.q2-q3) ,r
r= f e 1+ - dV

(Vi)
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whert-, d.. d- d- . - t ii ;p~cc 'i: .It. The inter..1 over the space angle can be
V-

vaIt L tcki if L' , tW :' ;a fwi1, ti I Of t1 " Wrl. ic!s ' and 13,, which are the

dc I t !olt of a. t : !1' d . ''c 1, + q i , respectively, the (x,y) plane

an , ,, i,. It r.t rs , . throngh the inte ,ral r, which is expressed

f,)! tfi, i r i t.. , I ,l im t, hv I q .

I: I .I- Ir ' th( i nt i.ral , xcr the space angle, we put Aqy = q 3 e,
, f+ I: , n 1q 1T1 = 1, %,V specify that - is a constant

S1 si " o 131 i

.h,e value is deter'ined by simultaneous fulfillment of the law of conservation of

. .0. , t , , i iic t ia " or i t entnlr of the interacting quasi-

v. z
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Mi.nd "" can rc h i d for I irge

• - r .ml I are mu, 1 larger thin the wavelength

• , , . it - cr. I ari,- rid then %,e can

t 1 - I. I i II prm.ir Irt: rat heCOMes

-.. ' V ,V .

, , t T I ' c I tTI t I M e [I I M' ic II t th a

. ., , , ' ' \ '- t he r M!tc r ., phononrs



J

49

In the foliloind we "halI di cu Koie 'c i.1l ,'xanples of tllr:i , ic

interact ions . In pr~parat i'm for this di scussi n ,e r.ust realize that phonon

(q ,, produced in the volume V. are scattered from this volume principally

along the direction 4, + 4. Therefore, we can obtain the power of the

generated wave >ioply by multiplying Eq. 11 by- ..

Noncollineir Interactions of Ultrasonic Waves

The power of the wave (q, is filw L Lv /V) , and the pno.,er of the

wave , is (-t 21.L v2N /V). Ilsing these eypressions and multiplying

Lq. 11 by iw we can express the power of the wave generated by the jioncollinear

interaction of (q P,) and (q,,w,) as

2 G' 2
Vi qlq2 q 3  3

(13) P3 3 3 P P"31L 3= L3L 3  8p3 VlV2V3 -3
y z

The wave of power P 3 is scattered from the volume prT Inc i pall v al r the

x-direction which is parallel to qI + (I By ex;kmi n in, the r lit ion T-

(S), it can be shown that most of the phonon, 10 are .c:Itt reci into the

sol id angle given by the first minimum of t~e funet ion "" The Inul r

(max 27 (ma x) 2
positions of these minima are given by -illxj and O m +v q_., q3 I '1

so that the solid angle in which most of the phonons are observed is

At lar',ie distances R->>.y, I. the average intensity of the wave scattered

from the volume V. can be calculated as

1~
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2 G2  4 (1)Vi q 1(2 q -z 3  (4

R 32i~

where I1 and 12 are the intensities of the two interacting waves (q 1,il) and

(q,,w9,). The apparent difference between (12) and (14) must be considered

carefully when experimental data are taken.

For comparison with experiment we shall derive the formula for the

amplitude of the ultrasonic wave (qs, ri) Using,, relations (7) and (8 and

putting aq = , a 2, and a_ q L /2 ' the transition prolahilit,

rate for scattering of phonons (qut)3) into a certain solid angle L-, is given

by

Al(ev') q2 3  1W 2 W N N (15)
2 23 220121

32r-p vIv 2 V3  V

h re

[sin q0 l, /Z 2(sin q L. /,

_3 y y _ 2 .3 2 "5(v,) , 
= " 3yy 2 q3 o".L,/2, J (1l,)

Equation (I.-) gives the average number of phonons (q3,) 3) scattered per unit of

t ) ,; ,' ,a e ] aln' thc di ri-ct io:, determined by the deviation

angles ) and 03 Thus, by multiplying Eq. (15) bvf- and dividing it by

ruic can calculate the average intensity of the scattered wave at a

distance R trom the interaction volmIe. From this, one can obtain the amplitude

of thc ultra sonic wave in the form

V - -.
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A ( a G qlq 2 q 3  A , 1 ( y , ( 7)

32 qlq qSA1 A2  R
8irv 3

This formula gives the distribution of the amplitude of the generated wave as a

function of 6 and 6 Z. It gives an excellent possibility to analyze experimentaly z

data in detail and to correct for geometrical diffraction of the generated wave.

It is interesting to compare Eq. 17 with similar formulae obtained in

references 9 and 11. Agreement is obtained if we put into Eq. 17, a = 1 and

R = 4- , where S is the cross sectional area of the wavefront. However, making

this substitution eliminates the "wave" character of the scattering, and thus

leads to inexactness. The results in 9 and 11 are inexact in that the scattering

process has been calculated as though it were spherically isotropic scattering

with strict fulfillment of the law of conservation of momentum. No such

assumption is made in deriving Eq. 17.

Collinear Interactions: Second and Third Harmonic Generation

by Sinusoidal Ultrasonic Waves

Collinear interactions of ultrasonic waves bring some peculiarities to

the problem of correct interpretation of the theoretical formula because

the created phonons ( ) remain in the interaction volume: their phase

velocity and direction of propagation are the same as the phase velocity and

direction of propagation of the interacting waves (we neglect the effect of

dispersion). First, we recall that the optimum conditions for interactions

are given by simultaneous fulfillment of the laws of conservation of energy

and of momentum. The corresponding relation can be written symbolically as
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'q + =(q22) (q3'0 3 ) (18)

We can now introduce the symbolical vector Wn b(qn.in)' and using it we can

graphically solve the relation (IS) in the (q,w) plane as shown in Figure 1.

Dashed lines in Figure 1 should be drawn so that the tangent of the angle of

deviation from the q-axis is equal to the corresponding phase velocity. Thus,

using a diagram like Figure 1, it can be shown that collinear interaction can

exist when the interacting waves have the same phase velocities, or only in

special cases when the phase velocities are different; i.e., when v1 # v2 # v3.

This relation can be satisfied only in directions in a crystal which are not

pure-mode directions. Thus, collinear interaction of waves of different modes

can exist only when the waves are propagating along a direction which is not

a pure-mode direction.

Let us now consider the case when vI = v2 = v3; i.e., the collinear

interaction of waves of identical modes of polarization. The experimental

situation in this case can be described as follows: Two ultrasonic pulses

ql, I and (q2,w2) are simultaneously launched into the sample at time t = 0.

The pulses travel along a pure mode direction in the sample producing phonons

(q3,w3) which remain in the space simultaneously occupied by both pulses, as

we have assumed v v2 = v3. Describing this situation in terms of continuous

waves, we can say that the concentration (number per unit volume) of phonons

(q 3 , 3 ) at time t = Lx/v- produced in the pulse regime will be the same as

the concentration produced by continuous waves propagating a distance L.  !

Using this conclusion and using Eq. 11 for the concentration of phonons ( 4 ,u2

at a distance L , we obtain
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--nT C1q2 (19)-Gqlq 2q3  219
N3 (L x ) = 8P 3 v 8 3NIN 2 L x

N 3 (~) 8p 3v

where v = v 1 = v2 = v 3* Realizing that-tiwN is the energy density of phonons

in the wave identified by the subscript i, one can calculate the amplitude of

the wave at the distance L as
x

Gqlq 2q3
A Lx 3-2 l A L x(20)A3 (Lx) = 402 qlq 2A1A2Lx (0

In deriving both N3 (L x) and A 3(L x) we have assumed that N and N2 are constants

and that N3 = 0 at t = 0.

Second Harmonic Generation

Equations 19 and 20 can be applied directly to second harmonic generation

by an initially sinusoidal ultrasonic wave. Simply putting N1 = N2 = N0/2

and assuming v I = v2 = v3 = v as before, we find that the second harmonic

generated by a wave which has a concentration of phonons N is, from Eq. 19:

qNq 2q3 2 2 L2Ns 3v8 uousNoL (21 )

32P 3v8

where N is the concentration of phonons in the second harmonic, while
S

W = 2w0  is its angular frequency. In a similar manner, from Eq. 20 one

finds that the amplitude of the second harmonic at a distance L from the
x

beginning of the sample is
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s q A L (22)s 8pv 2  o x

This formula agrees with that derived from clas.,ical considerations. In Ref. 1,
3K+K 3

the amplitude of the second harmonic is given as -( )A k a, where K2 and.K 3

are the appropriate combinations of second-order and third-order elastic con-

stants, respectively, A is the initial fundamental amplitude, k is the

propagation constant 27/X, and a is the sample length. Except for notational

differences, these two expressions are identical.

Third Harmonic Generation

The third harmonic of an initially sinusoidal ultrasonic wave is built

up by two processes: First is a three-phonon process in which the fundamental

phonon (q0 wo) and the second harmonic phonon (qSS) annihilate to create

the third harmonic phonon ( t), where wt = s+ = and second is a

four-phonon process in which three annihilating fundamental phonons (qo ,W)

create the third harmonic phonon (qt,wt). We shall consider here only three-

phonon processes which will give the significant terms found in the third

harmonic amplitude. The four-phonon processes are ignored in the

following.

Generation of the third harmonic gradually increases with the increase

of the generation of the second harmonic. The second harmonic concentration

at a distance Lx from the end of the sample is given by Eq. 21. This relation-

ship is used in Eq. 11, along with the expression dN t/dt = v dN t/dx to obtain

the concentration of the third harmonic in the form

itr C
I qlq 2 q 3 2 3 2 33d t 8P v8 (a)w5t 0 x dx (23)
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Applying the boundary condition N3 = 0 at x 0, we find that the third harmonic

can be expressed as

At = 2A 2/A %241
t so

which is in very good agreement with the formula 3 obtained from considering

15.
the harmonic generation as a nonlinear process. To facilitate comparison, we

repeat Eq. 1 of Ref. 3 with slight notational changes:

(r~r1 3 ]2 112C+3c
2 A ill +3C 1 1  16 11 C1111 3C + -

A 2 q C + 9q0L2  (Clll + 3Cl) 2(24a)

Comparison of Eqs. 24 and 24a leads to the conclusion that our neglect of four-phonon

processes has dropped terms corresponding to the small term involving fourth-

order elastic constants. This term was found to be negligible in the experi-

ments reported in Ref. 3.

IV. PARAMIETRIC DOWN-CONVERSION OF TWO ULTRASONIC WAVES
AND PARAMETRIC AMPLIFICATION OF AN ULTRASONIC WAVE

THROUGH ITS NONLINEAR INTERACTION WITH ANOTHER
ULTRASONIC WAVE

The parametric down-conversion mixing process is observed as the

generation of an ultrasonic wave of frequency w3 by two ultrasonic waves w and

W 2 such that tu3 = 1 + W 2" This process can be described as a process in which

a phonon (q,w 1) is annihilated, and phonons (q2, w2) and (q3,w3) are created.

The process involving the annihilation of the phonon (ql,tL1) and the creation

of two new phonons is suggested in the Hamiltonian density (Eq. 3) by terms

containing A A*. *... Although spontaneous annihilation of a phonon has a
q q q

very low probability of occurrence, the disintegration can be stimulated by the

presence of one of the two components resulting from the annihilation.
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Let us assume that the annihilation of the phonon (ql,l) is stimulated

by the presence of the phonon (q2,w 2 ). We assiine th~it there are N1 phonons

(1,,w1) and N2 phonons (q2,w2) in the volume of normalization V under con-

sideration. The amplitude of the transition from the initial state 1NI,N,,O>

to the final state IN1- ,N2+1,1> is given also in this case by Eq. 4, provided

that N1 and N2 are much larger than unity. Repeating the procedure described

in the previous section, one can again derive Eq. 11. This means that

parametric down-conversion is described by the same formulae as the parametric

up-conversion; however the down-conversion is accompanied by the effect of

the amplification of the stimulating wave. The amplification of the stimulating

wave results from the fact that the phonons (q2,q2), created from the disin-

tegration of the phonons ( iw 1), contribute to the stimulating wave.

Let us now calculate the effect of the amplification, and simultaneously

take into account the attenuation of the stimulating wave. Wu define the

attenuation coefficient of an ultrasonic wave as

a, dN 1 dN2N dt 2N dx v v , (25)

where a', the temporal attenuation coefficient, expresses the decrease of

amplitude per unit of time, and a expresses the decrease per unit of length.

Using this definition we can modify Eq. 11 to include attenuation:

rC2dN 2  I 2 q3W ]W
qlqLq3  l ~Ni - 2a' N (26)

dt 8p3 V1v2v3  22

Assuming that N = 0 at t = 0, the energy density of the stimulating wave at

tine t = Lx/v 2 is

-1X
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22qlq-7q3 L2 -I2 x 27

P,(Lx) P2 ( O)exp 3 2 3 Lp (27)

where L is the length of the sample in the direction of the wave vector

q3 = q, " 2-

Influence of Attenuation on Nonlirear Interactions
of Ultrasonic Waves

We have tacitly assumed that the attenuation of the interacting waves is zero

in all previous sections except for the section on parametric down-conversion.

This, however, never is completely true, and therefore this section will be

devoted to discussion of the possible effect of ultrasonic attenuation on

nonlinear interactions of ultrasonic waves.

As before, the total transition probability rate (Eq. 11) is equal to

the total number of transitions per unit of time; i.e., it expresses the

average number of phonons (q3,u3) created in the volume V i per unit of time.

With the help of Eq. 25 and Eq. 11 we can write for the concentration of

phonons (q3.,w 3 ).

-t G 2

dN3  qlq~q3123 ,,
3-t 3 1--3"L N N - 2a'N (28)

-tp 3  ')223 x 12 3 380 VlV2 V3

-2r1t -2a2t
If we assume that N = N e and N, = N e , when N and N are

1 01 02 01 02)

the concentrations of phonons at time t - 0, Eq. 28 has a solution of the

form
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--h (2 [ -2((I'+at )t 't .N= qlq2 q. Wl W2 W 3  N

N3 = 23 Lxw, N 02 [la("'-2-I"~c a2"t (30

8p v 1VI

Expanding the exponential functions and keeping only the linear terms, one has

N3 = 3 2 2 3 1l 2 3N01N02toWNNLx[l-(a'+a'+a')tlt (30)

which is valid for small attenuation and short times t. From this, one sees

that attenuation can be neglected, and Eq. 30 reduces to Eq. 19, when
L

A is a' cosant o th od o)x << I In materials with a low value of( 1 2 1 + 2 +  3 v 
2"

attenuation, the attenuation coefficient often is expressed by a = A 2, where

frequencies between 10 and 100 Miz are investigated. Therefore, we shall go

into greater detail only on collinear interactions.

Collinear interactions. Since the power of the ultrasonic wave can be

written P. =4w.N.L 1 v., we can use Eq. 29 to write

qG2 qu 2~ p 2(af++a)t -2a~t

qlj 3 ] 1 2 - e1

P3 3 3 3 2 L L P0 1 P0 2  2(a-al-a') (31)
10 VlV 3  y zII

Here L is interpreted to mean the effective interaction length, while t is thex

effective interaction time. Although this expression is limited to collinear

interactions, it nevertheless is quite general in that it is valid for
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describing the interaction of ultrasonic waves of different polarization

modes.

If the interacting waves are of the same polarization mode we can again

putv 1 = v 2 = v3 = v and write

G2 2 -2(a1 ,7z -2-3

SqIq2q3 3 L2 
e -e 3

8P 3v 9L L L x 0 2 (a 3 -a-a 2 ) (32)
y z

where a = a L is the total attenuation of each wave over the sample length 1. .n n x

From this, the amplitude at the end of a sample of length L is found to be

G ql q3e 2a 1 +a2) e -20L 3 1/2

A 3= 2 q1q2A 0 1A0 2L e
4pv 2  2(a 3-al-a2) (33)

Stabilization Distance

At a certain distance of propagation in the sample, the harmonic growth

will be equal to the attenuation, with the result that a stabilization of the

waveform will occur. This stabilization distance L can be calculatcd from
max

Eq. 32 by taking the derivative and setting it equal to zero. For a sufficiently

long sample the stabilization distance is

kn(a1 + a2) - Zn a3
Lmax =vtmax= 2(a + a 2 - a ) (34)

1 2 3)

This is the distance at which the ultrasonic wave q3 resulting from the

nonlinear interaction has its maximum value.



Comparing this equation with that published in Ref. 6, one find'. di fir,'nc

of a factor of two. The origin of this differnce i, not known at pre-;?nt.

Second larmonic Generation

Assuming that A = A02 = A /F, the case of second harmonic generation

by an originally sinusoidal ultrasonic wave of amplitude A0 can be calculated.

From Eq. 33 we find

G q -4c -2at
qq 2q3  2 2 e -e

A A AL 1()
8pv OX 2ct S 4a

where ( and a denote total attenuation of the primary wave and the second0 s

harmonic, respectively.

V. CONCLUDING REMARKS

We have discussed in some detail the nonlinear effects arising from the

interaction of two ultrasonic waves. As has been mentioned, there is good

agreement between our results and the results in Refs. 1, 2, 3 and 15, if one

compares the particular limiting cases of our general treatment with the results

in these papers. This agreement is a valuable result because it shows that in

the correspondence limit the quantum mechanical description of harmonic

generation gives the same results as classical calculations for both the second

harmonic amplitude and the third harmonic amplitude. This emphasizes the point

that nonlinear interactions are a unique and powerful tool for the measurement

of the nonlinear properties of materials.

Finally, we shall discuss the limiting assumption concerning the power

of the generated wave. In discussing the nonlinear ultrasonic interactions



c nI,,y i -;Id tIhit t t i ;it ii stit ot thc created phonons is empty. "Ih I

nc~ill that olI t ht hei , n f the o,,erat i ' pr,,c :,- has been considered.

F h I, 1 I, \ t , I th," ,- tIat I de cribcd in a previoil; paper based on classi' l

cact l ito t .On hut I i the prc.en t situation t his doe s not put an essential

1 irntat Ion on our 7nsider:it I n-. If the initial state of the created phorons

were not it Ial I I opt' V, the 'I u k scatter in ," s hou 1 d be taken i nto account.

This s iturit ion can hc described symbol i callY h

[< I- ,:,I_ ' 3+'  l' iint:"' R S, - -. +I .; , I[ lint ' *-' ' X 3> '

(36)

NN - (N.*N)N

The siti!:ition described in our discussion is obtained if N1 = N, >> N It

can be shown that the correction for "back scattering" is about 2,' when the

power of the generated wave is about 1% of the primary waves. In most

practical cases the power of the generated wave is much lower than 1' of the

power of the primary wave. TLerefore, the equations we have derived are

adequate to describe most experimental situations.
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